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Abstract
In this paper a signal processing technique is developed to detect
delamination on composite structures. In particular, a wavelet-based signal
processing technique is developed and combined with an active sensing
system to produce a near-real-time, online monitoring system for composite
structures. A layer of piezoelectric patches is used to generate an input
signal with a specific wavelet waveform and to measure response signals.
Then, the response signals are processed by a wavelet transform to extract
damage-sensitive features from the original signals. The applicability of the
proposed method to delamination identification has been demonstrated by
experimental studies of a composite plate under varying temperature and
boundary conditions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the 1960s, the ultrasonic research community has studied
Lamb waves for the nondestructive evaluation of plates [1].
Lamb waves are mechanical waves with wavelengths of the
same order of magnitude as the thickness of the plate. Because
the Lamb waves travel long distances and can be applied with
conformable piezoelectric (PZT) actuators/sensors that require
little power, they may prove suitable for online structural health
monitoring. In particular, the recent development of wavelet
analysis has allowed the application of Lamb wave techniques
to composite structures to flourish [2–7]. The advances in
sensor and hardware technologies for the efficient generation
and detection of Lamb waves and the increased usage of
solid composites in load-carrying structures, particularly in
the aircraft industries, has led to an explosion of studies that
use Lamb waves for detecting defects in composite structures.
However, much work needs to be accomplished in the area of
manufacturing process control and nondestructive evaluation
technologies.

This study contributes to the damage detection of
composite structures by developing an improved wavelet-
based signal processing technique that enhances the visibility
and interpretation of the Lamb wave signals related to defects in

a composite plate. In addition, a statistically rigorous damage
classifier is developed to identify wave propagation paths
affected by damage. Finally, a new damage location algorithm
is proposed to locate damage based on signal attenuation rather
than time-of-arrival information.

2. Test set-up

The overall test configuration of this study is shown in
figure 1(a). The test set-up consists of a composite plate
with a surface-mounted sensor layer, a personal computer
with a built-in data acquisition system and an external signal
amplifier. The dimensions of the composite plates are
60.96 cm × 60.96 cm × 0.6350 cm (24 in × 24 in × 1/4 in).
The lay-up of this quasi-isotropic plate contains 48
plies stacked according to the sequence [6(0/45/-45/90)]s,
consisting of Toray T300 graphite fibers and a 934 Epoxy
matrix.

A commercially available thin film with embedded
piezoelectric (PZT) sensors is mounted on one surface of the
composite plate as shown in figure 1(b) [8]. A total of 16
PZT patches are used as both sensors and actuators to form
an ‘active’ local sensing system. Because the PZTs produce
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(a) Testing configuration (b) Layout of the PZT sensors/actuators

Figure 1. An active sensing system for detecting delamination on a composite plate.

an electrical charge when deformed, the PZT patches can be
used as dynamic strain gauges. Conversely, the same PZT
patches can also be used as actuators, because elastic waves
are produced when an electrical field is applied to the patches.
In this study, one PZT patch is designated as an actuator,
exerting a predefined waveform into the structure. Then, the
adjacent PZTs become strain sensors and measure the response
signals. This actuator–sensor sensing scheme is graphically
shown in figure 1(b). This process of Lamb wave propagation
is repeated for different combinations of actuator–sensor pairs.
A total of 66 different path combinations are investigated in this
study. The data acquisition and damage identification are fully
automated and completed in approximately 1.5 min for a full
scan of the plate used in this study. These PZT sensor/actuators
are inexpensive, generally require low power and are relatively
non-intrusive.

The personal computer shown in figure 1(a) has built-in
analog-to-digital and digital-to-analog converters, controlling
the input signals to the PZTs and recording the measured
response signals. Increasing the amplitude of the input signal
yields a clearer signal, enhancing the signal-to-noise ratio. On
the other hand, the input voltage should be minimized for
field applications, requiring as little power as possible. In this
experiment the optimal input voltage was designed to be near
45 V, producing 1–5 V output voltage at the sensing PZTs.
PZTs in a circular shape are used with a diameter of only
0.64 cm (1/4 in). The sensing spacing is set to 15.24 cm (6 in).
A discussion on the selection of design parameters, such as the
dimensions of the PZT patches, sensor spacing and driving
frequency, can be found in [2]. The data analysis and signal
processing portion of this study is described in the following
sections.

3. Lamb wave based damage detection

One of the unique aspects of this study lies in that a carefully
designed input waveform is exerted into a structure to make
the response signal more sensitive to damage. The use of
a known and repeatable input makes the subsequent signal
processing for damage detection much easier and repeatable.
A similar approach to noise elimination in ultrasonic signals
for flaw detection can be found in [9]. In addition, a
multiresolution processing scheme based on wavelet analysis
is developed to extract a portion of the response signal that is

more amenable to signal interpretation for detecting defects.
Finally, the vibration characteristics of the response signals
are investigated under varying temperature and boundary
conditions.

Since Lamb waves were initially studied for seismology
applications in 1917 [10], damage detection techniques based
on Lamb wave propagation have been investigated by many
researchers over the last four decades because Lamb waves
can propagate over long distances and cover relatively large
areas of thin plates. Because the Lamb waves are typically
dispersive, their propagation through a solid medium often
creates multiple Lamb wave modes. The dispersive nature
of waves means that the different frequency components of
the Lamb waves travel at different speeds and that the shape
of the wavepacket changes as it propagates through solid
media. However, for damage detection applications, it may
be useful to limit the number of generated Lamb waves to two
fundamental modes, namely the S0 and A0 modes, and to select
a less dispersive frequency region so that the interpretation of
response signals becomes easier.

In this study, a Morlet wavelet with a narrowband driving
frequency around 110 kHz is designed as the input waveform
(see figure 2(a)). Several factors need to be taken into
account for an appropriate selection of driving frequency. The
first step in designing the input frequency is to compute the
dispersion curve of the group velocities. While the application
of effective elastic properties in composite laminates is limited,
it is often useful to derive such constants for an initial estimate
of the laminate response. Quasi-isotropic laminates exhibit
in-plane isotropy in response to in-plane loading. For these
laminates, the effective Young’s modulus, Poisson’s ratio and
shear modulus may be defined which are the same for any
direction within the plane of the laminate. These constants
are obtained by rotating the stiffness tensor of each ply from
the ply orientation angle to a common laminate direction. The
transformed stiffnesses are then averaged over the thickness
of the laminate, weighted by the thickness of each ply.
The elements of the averaged stiffness tensor are related to
effective elastic properties by analogy to an isotropic stiffness
tensor [11]. Following this procedure, the effective Young’s
modulus and Poisson ratio of the composite plate are computed
to be 5.5 GPa and 0.31, respectively. Then the velocities of P
and S waves are computed from the following equations [2]:

VP = √
(λ + 2µ)/ρ, VS = √

µ/ρ, (1)
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Figure 2. Lamb wave time signals from the tested composite plate.
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Figure 3. A dispersion curve for an idealized isotropic composite
plate (the abscissa is presented in terms of the frequency with the
given plate thickness (0.64 cm) rather than the frequency–thickness
product).

where µ = E/2(1 + ν), λ = νE/(1 − 2ν)(1 + ν), E is the
effective Young’s modulus, ν is the Poisson ratio and ρ is the
material density. Once the velocities of P and S waves are
obtained, the dispersion curve shown in figure 3 is obtained by
finding the Lamb wave solution for the wave equation [2, 12].

This dispersion curve is used to initially determine a
frequency range where only the fundamental modes propagate
and to find any non-dispersive regions. While the input
frequency should be high enough to make the wavelength of
the Lamb wave comparable to the scale of local damage, the
driving frequency also needs to be low so that higher modes do
not clutter the fundamental symmetric (S0) and anti-symmetric
(A0) modes. A reasonable match between the experimental
and analytical group velocities of the S0 and A0 modes are
shown in figure 3. The experimental group velocities of the
S0 and A0 modes are averaged values from several actuator–
sensor paths and there are noticeable variations in the wave
speeds, depending on the wave propagation directions along
the composite plate. Note that the dispersion curve shown in
figure 3 is computed for a macroscopically isotropic composite
plate, although the plate tested in this study is anisotropic.
Furthermore, the computation of the dispersion curve ignores
damping effects in the composite plate. Therefore, the
dispersion curve is used only as a guideline and several
trial-and-error experiments are conducted to tune the optimal
driving frequency value. For this experiment, the driving
frequency is set to 110 kHz.

Figure 2(b) shows the time response of PZT patch no. 1
when the Morlet input waveform is generated at PZT patch
no. 6. The numbering of the PZT patches is shown in
figure 1(b). The full curve represents the baseline signal
and the broken curve shows the response time signal when
delamination is simulated within a direct line of the actuator
and sensor path. The response signal is composed of
several wave modes because of the dispersive nature of the
excitation signal at the input frequency. From figure 2(b), it is
observed that some modes are more sensitive to the simulated
delamination than other modes. The first mode, which looks
like a sine wave modulated by a cosine function in figure 2(b),
is the first arrival of the A0 mode associated with the direct
path of wave propagation. The second mode is another A0

mode that is reflected from the edge of the plate. (Note that
the wave propagation path between PZT nos 1 and 6 pair is
near the edge of the plate. See figure 1(b).) The observation
of figure 2(b) clearly reveals that the first A0 mode is the most
sensitive to delamination damage. Although [5, 13] suggest
that the S0 mode is best for delamination detection, it was
difficult to work with the S0 mode in this particular example
because the S0 mode signal was too weak. This observation
is similar to the findings in [5]. Therefore, only the A0 mode
was used in this study.

As a wave propagates through a solid medium, energy is
transferred back and forth between kinetic and elastic potential
energy. When this transfer is not perfect because of heating,
wave leaking and reflection, attenuation occurs. In particular,
the attenuation is increased by the presence of the delamination
and the energy of the input force spills over from the driving
frequency to neighboring frequency values. The energy loss
in a damaged area is a result of the reflection and dispersion
caused by micro-cracks within the laminate, resulting in the
excitation of high frequency local modes. Based on these
observations, a damage index is defined as the function of a
signal’s attenuation for a limited time span (a signal portion
corresponding to the first A0 mode) and at a specific frequency
(the input frequency of the signal). Note that the attenuation is
correlated to the amount of energy dissipated by the damage. In
other words, the proposed damage index measures the degree
of the test signal’s energy dissipation compared to the baseline
signal, especially at the first A0 mode and at the input frequency
value.

To achieve this goal, a wavelet transform is first utilized to
obtain time–frequency information for the baseline signal [5].
This procedure is schematically shown in figures 4(a)–(c). In
this study, the real Morlet wavelet is used for the family of
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Figure 4. A wavelet analysis procedure to extract a damage-sensitive feature.

basis functions. (Note that the same Morlet wavelet is used
as the input waveform in the experiment.) Because the shape
of the actuating input is the same as the shape of the wavelet
basis functions, the wavelet analysis procedure becomes more
accurate and efficient [9, 14]. This wavelet, ψ(t), is defined as

ψ(t) = e−t2/2 cos(5t) (2)

where 1500 data points are sampled between −4.2 and 4.2
of time t . Assuming the sampling rate of 20 MHz, this
waveform results in a central frequency of 110 kHz. The
wavelet transform, W f (u, s), is obtained by convolving the
signal f (t) with the translations (u) and dilations (s) of the
mother wavelet:

W f (u, s) =
∫ ∞

−∞
f (t)

1√
s
ψ∗

u,s(t) dt (3)

where

ψ∗
u,s(t) = 1√

s
ψ

(
t − u

s

)
. (4)

Note that each value of the wavelet transform W f (u, s) is
normalized by the factor 1/

√
s to ensure the integral energy

given by each wavelet is independent of the dilation s.
Once the time–frequency information is obtained

(figure 4(d)), the signal component corresponding only to the
input frequency is retained for additional signal processing. By
looking at this filtered view of the transmitted energy from the
actuator to the sensor at the input frequency, one could gain
an insight into how the intensities of the input energy have
been shed into sideband frequencies as a result of damage.
Then, the energy content of this baseline signal component is
computed only at the first A0 mode of the signal (figure 4(e)).
These procedures (figures 4(a)–(e)) are then repeated for a test

signal. Finally, the damage index (DI) is related to the ratio of
the test signal’s kinetic energy to that of the baseline signal:

DI = 1 −
∫ u1

u0

W ft(u, s0) du

/∫ u1

u0

W fb(u, s0) du (5)

where the subscripts b and t denote the baseline and test signals,
u0 and u1 represent the starting and ending time points of the
baseline signal’s first A0 mode and 0 � DI � 1. Note that
the value of DI becomes zero when there is no attenuation of
the test signal compared to the baseline signal and its value
becomes larger as the test signal attenuates more as a result of
damage.

4. Damage classification using extreme value
statistics

Once the damage index value is computed, a method must be
employed for determining a statistically rigorous threshold,
whose exceedance indicates the presence of damage in a
path. This establishment of the decision boundary (or the
threshold) is critical to minimize false-positive and false-
negative indications of damage. Although data are often
assumed to have a normal distribution for building a statistical
model for damage classification, it should be noted that a
normal distribution weighs the central portion of data rather
than the tails of the distribution. For damage detection
applications, we are mainly concerned with extreme (minimum
or maximum) values of the data because the threshold values
will reside near the tails of the distribution. The solution to this
problem is to use an approach called extreme value statistics
(EVS) [15], which is designed to accurately model behavior in
the tails of a distribution.

Suppose that one is given a vector of samples
{X1, X2, . . . , Xn} from an arbitrary parent distribution. The
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(a) Gumbel distribution curve-fitting

(Only top 10% of data is used for curve fitting) 
(b) Gumbel distribution curve-fitting

(Zoomed for top 10% of the damage index values)  

Figure 5. Fitting of a Gumbel maximum distribution to the top 10% of damage index values.

most relevant statistic for studying the tails of the parent dis-
tribution is the maximum operator, max({X1, X2, . . . , Xn}),
which selects the point of maximum value from the sample
vector. Note that this statistic is relevant for the right tail of
a univariate distribution only. For the left tail, the minimum
should be used. The pivotal theorem of EVS states that, in
the limit as the number of vector samples tends to infinity, the
induced distribution of the maxima can only take one of three
forms: Gumbel, Weibull or Frechet [16]:

FRECHET: F(x) =




exp

[
−

(
δ

x − λ

)β]
if x � λ

0 otherwise

(6)

WEIBULL: F(x) =




1 if x � λ

exp
[
−

(
λ− x

δ

)β]
otherwise

(7)

GUMBEL: F(x) = exp

[
−exp

(
− x − λ

δ

)]

−∞ < x < ∞ and δ > 0. (8)

In a similar fashion, there are only three types of distribution
for the minima of the samples;

FRECHET: F(x)

=




1 − exp

[
−

(
δ

λ− x

)β]
if x � λ

1 otherwise

(9)

WEIBULL: F(x)

=




0 x � λ

1 − exp
[
−

(
x − λ

δ

)β]
x > λ

(10)

GUMBEL: F(x) = 1 − exp

[
−exp

(
x − λ

δ

)]

−∞ < x < ∞ and δ > 0 (11)

where λ, α and β are the model parameters, which should be
estimated from the data. Note that α and β should be greater
than 0.

Now, given samples of maximum or minimum data from
a number of n-point populations, it is possible to select an

appropriate limit distribution and fit a parametric model to
the data. It is also possible to fit a model to portions of the
parent distribution’s tails, as the distribution of the tails is
equivalent to the appropriate extreme value distribution. Once
the parametric model is obtained, it can be used to compute
an effective threshold for damage detection based on the true
statistics of the data, as opposed to statistics based on a blanket
assumption of a Gaussian distribution. Details on parameter
estimation of extreme value distributions can be found in [17].

In this study, the damage index value is computed from
various normal conditions of the composite plate. Then, the
statistical distribution of the damage index is characterized by
using a Gumbel distribution, which is one of three types of
extreme value distributions. λ and δ values in equation (8)
are estimated to be 0.1536 and 0.0226, respectively. Figure 5
demonstrates how well the maximum values of the damage
index can be fitted to a Gumbel distribution. Note that the
Gumbel distribution is fitted only to the maximum 10% of
the damage index values. From this fitted cumulative density
function (CDF), a one-sided 99.9% confidence interval was
determined, resulting in a threshold value of 0.29.

It should be noted that the computation of the threshold
value based on EVS requires training data only from the
undamaged conditions of a structure, classifying the proposed
statistical approach as one of the unsupervised learning
methods. Another class of statistical modeling is supervised
learning where training data from both undamaged and
damaged conditions are required. When a structural health
monitoring system is deployed to real-world applications, it
is often difficult to collect training data from various damage
cases. Therefore, an unsupervised learning method, such as the
one presented here, will be more practical in field applications.
Furthermore, by properly modeling the maximum distribution
of the damage index, false alarms have been minimized.

5. Experimental results

Because multiple damage cases needed to be investigated and
there was only one composite plate available, delamination
on the composite plate was simulated by attaching industrial
putties in various locations. Because the putty attenuates
the Lamb waves in a similar manner as delamination does,
this material closely models the change of the Lamb wave
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(a) Actual damage simulated by
placing industrial putties

(b) Actual-sensor paths affected
by delamination

(c) All boxes crossing the damage
paths at least once are identified

(d) Any boxes crossing the undamaged
paths are excluded

(e) The first possible damage
location is defined

(f) Identify damaged paths not
crossing the selected box(es)

Figure 6. Damage localization procedure using virtual grids.

(a) Actual damage simulated by
placing an industrial putty

(b) Actuator-sensor paths affected
by the damage

(c) The damage identified by the
proposed method

Figure 7. Detection of a single damage location using the wavelet-based approach.

characteristics that may be expected from delamination (see
figure 6(a)). The size of the industrial putty patch was about
2.54 cm × 2.54 cm (1 in × 1 in).

First, the baseline signals corresponding to 66 different
actuator and sensor paths were recorded at a known intact
condition of the plate. Once delamination was simulated by
placing the industrial putty at an arbitrary location on the
composite plate, the test signals were recorded for the actuator
and sensor combinations identical to the baseline case. Then,
the damage index value defined in equation (5) was computed
for each path. A given actuator–sensor path is classified as
damaged when the value of the damage index becomes larger
than 0.29. This threshold value for the damage index is
established by using the previously described EVS. Figure 6(b)
displays the actuator–sensor paths (damaged paths) affected
by the simulated damage shown in figure 6(a). These damage
paths have DI values greater than 0.29.

The next goal is to pinpoint the location of the
delamination and to estimate its size based on the damaged
paths identified in the previous step. To identify the location
and area of the delamination, the composite plate is divided
into 25-by-25 virtual grids, as shown in figure 6(b). The
size of each grid is 2.44 cm × 2.44 cm (0.96 in × 0.96 in).

The delamination shown in figure 6(a) is identified from the
damaged paths previously detected in figure 6(b) based on the
following rules:

(1) All boxes crossing the damaged paths at least once are
identified (figure 6(c)).

(2) Any boxes crossing the undamaged paths, that have a
damage index value less than or equal to 0.29, are excluded
from possible damage locations (figure 6(d)).

(3) The box that has the largest number of the damaged paths
crossing and zero undamaged paths crossing is selected as
the first possible damage location (figure 6(e)).

(4) If there are any damaged paths left that are not crossing
the damaged box(es) selected in the previous step, find
a subset of the boxes that are crossing these remaining
damaged paths and repeat steps (1)–(4) until there are no
damaged paths left that are not crossing the selected boxes
at least once (figure 6(f)).

Note that this last step (4) is necessary to detect multiple
damage locations. In addition, a delamination area larger
than one virtual grid size will be indicated by multiple boxes.
The capability of the proposed method to detect single and
multiple damage locations is successfully demonstrated in
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(a) Actual damage simulated by
placing multiple industrial putties

(b) Actuator-sensor paths affected
by the damage

(c) The damage identified by the
proposed method

Figure 8. Detection of multiple damage locations using the wavelet-based approach.
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Figure 9. Change of the response signal as a result of a boundary condition change.

figures 7 and 8, respectively. Although it is not presented
in this paper, different sizes of simulated delamination and
industrial putties attached on the backside of the plate are also
successfully detected. It is worthwhile noting that our damage
localization method is solely based on the estimation of signal
attenuation, unlike other methods that use the time-of-arrival
information [5, 18]. Therefore, the proposed damage location
approach can be easily applied to anisotropic composite plates
because the wave speed variation in regards to the fiber
orientation of the plate is irrelevant.

In real world applications, it is also important to
demonstrate that structural health monitoring is robust when
used under varying environmental and operational conditions.
The effect of varying temperature and boundary conditions on
the proposed damage detection algorithm is investigated. First,
one edge of the plate is clamped using an aluminum plate, as
shown in figure 9(a), and the associated response signal for the
wave path of patches nos 2 and 3 is shown in figure 9(b). It
is clearly demonstrated that the clamped boundary condition
only changes the second A0 wave of the signal reflected from
the clamped edge of the plate (the second modulated sine wave
in figure 9(b)). However, it does not affect the performance
of the proposed damage detection algorithm at all because the
damage index is based on the signal’s attenuation only at the
first A0 mode.

Second, the influence of varying temperature on the
damage detection algorithm is investigated. As shown in
figure 10(a), one portion of the plate is heated using an
industrial heat gun from 26 ◦C (78 ◦F) to 43 ◦C (110 ◦F) and
49 ◦C (120 ◦F), respectively. The responses corresponding to
these three temperature conditions are shown in figure 10(b).
The amplitude changes are negligible and only a small time

delay of the response signals is observed. However, this time
delay does not affect the performance of the damage index
because the proposed damage detection again depends only on
the signal’s attenuation at the first A0 mode. More extensive
studies on the environmental and operational variations of the
system are necessary to further demonstrate the robustness of
the proposed damage detection system.

6. Summary and discussion

In this paper, a damage detection algorithm is developed to
identify the location and area of delamination on a quasi-
isotropic graphite/epoxy composite plate. A unique input
waveform to drive PZT actuators and a signal processing
analysis technique are developed based on wavelet analysis.
In addition, a statistically rigorous damage classifier is
incorporated based on extreme value statistics to minimize
false indications of damage. By using the proposed input
waveform and signal processing technique, the proposed
damage detection algorithm was able to properly detect
simulated delamination on a composite plate even in the
presence of varying temperature and boundary conditions.
Finally, the approach presented herein is very attractive for the
development of an automated continuous monitoring system
because of its simplicity and minimal interaction with users.

However, it should be pointed out that the procedure
developed has only been verified on relatively simple
laboratory test specimens. To fully verify that the proposed
approach is truly robust, it will be necessary to test the proposed
approach for a wide range of operational and environmental
cases and for different representative damage types, such as
ply crack, fiber breakage and through-hole penetrations. In
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26 oC 49 oC

43 oC

26 oC 49 oC

43 oC

(a) Temperature of one corner of the plate is
increased from 26 oC to 43 oC and 49 oC

(b) The response signals of the actuator (no.1) and sensor (no.6)
pair 

No.

Figure 10. Change of the response signal as a result of temperature variation.

addition, the minimum size of detectable delamination depends
on the spacing of the PZT patches, selection of the actuating
frequency, the size of the virtual grids and the wavelength
of the transmitted waves. In general, users will specify the
minimum size of delamination that they want to detect. Then,
the aforementioned design parameters need to be optimized
to ensure that the specified minimum delamination can be
detected. Further research is warranted to optimize these
design parameters. A follow-up experiment is underway to
seed initial delamination into composite structures by impact
testing and to grow the delaminated area by cyclic load testing.
The proposed system will be continuously used to monitor the
growth of delamination during these tests.
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